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A Rapid Fault Reconstruction Strategy Using a

Bank of Sliding Mode Observers
Mehran Shakarami, Kasra Esfandiari, Amir Aboulfazl Suratgar, and Heidar Ali Talebi

Abstract—This paper deals with the design of a model-based
rapid fault detection and isolation strategy using sliding mode
observers. To address this problem, a new scheme is proposed
by adaptively combining the information provided by a bank
of observers. In this regard, a new structure for sliding mode
observers is considered. Then, the well-known recursive least
square algorithm is utilized to merge individual state estimations
suitably such that the system fault is detected faster. The required
condition for enhancing perfect state estimation is derived, and
the stability of the overall system is proven via Lyapunov’s direct
method. The supremacy of proposed scheme is fully discussed
through mathematical analyses as well as simulations.

I. INTRODUCTION

Reconstructing unknown inputs of a given process is of

great significance from both practical and theoretical aspects.

One example of unknown inputs is exogenous disturbances. It

is well-known that if such disturbances are not identified and

compensated properly, they will deteriorate performance of the

closed-loop system. To tackle this problem, several disturbance

observers have been developed in the control literature [1]–

[3]. System components fault, which frequently occurs in

engineering systems, is another example of unknown inputs.

Occurrence of fault may cause irrecoverable damages and even

failure of the whole process. To avoid such circumstances,

one solution is to consider redundancy for critical components

of the process and always check the signals provided by

these duplicated components. By using such structures and

employing a voting mechanism, it is possible to detect faulty

signals, and in turn, select the appropriate signals. This strategy

has been widely used in industries to obtain a process with

high availability. Although such a simple approach has proven

to provide reliable schemes in practice, one cannot turn a

blind eye on the fact that it is costly and not energy efficient.

Moreover, in some applications it is not possible to duplicate

system components due to the nature of the understudy prob-

lem, space limitations, accumulation of noise, etc. To avoid

such problems, in the past few decades, several attempts have

been made to reconstruct faults using automatic strategies [4]–

[7]. In [5], Sliding Mode Observers (SMOs) are employed

to design a model-based structure to reconstruct waste-gate

faults in turbocharged gasoline engines. In [6], an algorithm
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is presented for fault detection in linear time-varying discrete

systems using Luenberger observers. Partial kernel principle

component analysis is employed for health monitoring of aero-

derivative industrial turbines in [8].

Many existing methodologies in control literature assume

that all system states are accessible [9]. However, this assump-

tion is not always realistic. It is well-known that this issue

can be addressed by employing suitable observers. In the past

decades, several observers and observer-based strategies have

been presented for linear and nonlinear systems [10]–[13].

Among these observers, SMOs, which are capable of rejecting

impacts of disturbances on the final estimations, have obtained

great deal of attentions from fault detection community. This

feature, disturbance rejection, is employed for fault detection,

isolation, and input reconstruction in [14]–[17].

On the other hand, it should be emphasized that not only

does late detection of such malfunctions cause fault propa-

gation and failure of the whole process, but it also put the

process operators’ lives in jeopardy. Hence, early detection of

such malfunctions has received a considerable attention, and

several attempts have been made to design rapid fault detec-

tion methodologies [18]–[20]. In [18], an intelligent modular

method is proposed for fast fault detection and classification

in power systems. A robust fast fault detection approach is

presented for T-S fuzzy systems in [19]. Assuming the time

derivative of system output, ẏ(t), is available for measurement;

an algorithm is presented for rapid actuator fault detection in

[20]. On the other hand, it is well-known that by using multiple

observers one can estimate system states with better transient

response [21], [22], which can be employed for fault detection

purposes. In [23], a new identification scheme is presented for

Linear Time Invariant (LTI) systems in order to improve the

parameter estimation performance. In this regard, a convex

combination of all information provided by multiple models

is utilized to estimate system unknown parameters. Applying

this idea to different systems with unknown parameters (e.g.,

LTI systems [24], linear systems with unknown periodic

parameters [25], [26], nonlinear systems [27], [28], and twin-

rotor system [29]) has shown that this approach is also capable

of providing satisfactory performance in various cases.

In this paper, a novel fault reconstruction scheme is pre-

sented using a convex combination of the state estimations

obtained from a bank of SMOs. The method is composed

of a new structure for multiple SMOs and the Recursive

Least Squares (RLS) algorithm. The main contributions of this

paper are as follows: I) A new structure for state estimation

of systems with unknown inputs is presented by adaptively

combining multiple SMOs state estimations. II) Using the

http://arxiv.org/abs/1904.10525v1
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properties of convex combination, the existence of some un-

known constant parameters that provide a perfect state estima-

tion is guaranteed. III) The stability of the proposed scheme,

consisting of interconnection of multiple dynamical systems,

is investigated, and it is proved that the estimations converge to

the actual values. IV) The mathematical performance analysis

of the proposed scheme is provided which shows that the

presented strategy is capable of resulting in a better transient

response in comparison to the conventional SMOs. V) The

presented fault reconstruction methodology does not require

accessibility of all system states.

The remainder of paper is structured as follows: The prob-

lem statement and SMO are presented in Section 2. In Section

3, the proposed observer scheme is introduced; then, the

existence of a perfect state estimation is assured. Furthermore,

the stability of proposed structure and its performance are also

discussed in this section. Simulation results are included in

Section 4, and finally, Section 5 provides the conclusions.

II. SLIDING MODE OBSERVERS

Consider the following uncertain system

ẋ = Ax +Bu +Dξ(t, x, u),
y = Cx,

(1)

where x ∈ Rn is the state vector, u ∈ Rm is the bounded

control input which stabilizes the system, y ∈ Rp is the system

output, and ξ(t, x, u) ∈ Rq denotes an unknown bounded

function satisfying the following inequality

∥ξ(t, x, u)∥ ≤ ξ, (2)

Moreover, it is assumed that p ≥ q and B, C, and D are full

rank matrices [11].

To estimate the state of the system, a SMO with the

following structure can be utilized

˙̂x = Ax̂ +Bu −Glỹ +Gnν(x̂),
ŷ = Cx̂,

(3)

where x̂ and ŷ represent estimations of x and y, respectively,

ỹ = ŷ−y is the output estimation error, and ν is a discontinuous

term about the hyperplane

So = {x̃ ∈ Rn ∶ Cx̃ = 0}; x̃ = x̂ − x,
Moreover, Gl ∈ Rn×p and Gn ∈ Rn×p are gain matrices to be

determined. Note that in order to estimate the system states

precisely, it is needed to reject the effects of unknown term

ξ on x̂. The following definitions, lemmas, and theorem are

used throughout the paper.

Definition 1 ( [30]): The Rosenbrock matrix R(s) of the

system (A,D,C) is given by

R(s) = [sIn −A D

C 0
] (4)

The values of s0 such that rank(R(s0)) < n + q are called

invariant zeros of the system (A,D,C).
Definition 2 ( [31]): A set K in a linear space L is called

convex if the line segment ab is contained in K for any

elements a, b ∈ K, i.e., (1−λ)a+λb ∈ K for any pair (a, b) ∈ K
and any λ ∈ [0,1].

Lemma 1 ( [31]): Let a1, a2,⋯, am ∈ L where L is a linear

space. The intersection of all convex sets in L containing ais

is called the convex hull K of {ai(i = 1,2,⋯,m)} and any

element of which, a′, can be expressed as follows:

a′ = m∑
i=1

βiai

where βi ∈ [0,1] is a constant term satisfying ∑m
i=1 βi = 1.

Lemma 2 ( [32]): Let F be a bounded linear operator on

an arbitrary Banach space L. If ∥F ∥ < 1, then I − F has a

bounded inverse as follows

(I −F )−1 = I + ∞∑
k=1

F k

Theorem 1 ( [33]): Consider the uncertain system (1), SMO

(3), and let

ν(x̂) = ⎧⎪⎪⎨⎪⎪⎩
−ρ P2ỹ

∥P2ỹ∥
if ỹ ≠ 0

0 otherwise

where P2 ∈ Rp×p and ρ ≥ ξ + γ0 with γ0 > 0. Then there exist

matrices Gl, Gn, and P2 such that A0 = A−GlC is a Hurwitz

matrix and the state estimation obtained from (3) converges to

the state of the plant if and only if:

● rank(CD) = q.

● invariant zeros of the system (A,D,C) lie in the open

left-hand side of complex plane, i.e., rank(R(s)) = n + q
for all s with non-negative real part.

In the sequel, it is assumed that the conditions of Theo-

rem 1 are satisfied, and a new observation scheme with more

preferable performance is presented.

III. THE MAIN RESULTS

In this section, the structure of the proposed observation

scheme and its performance are fully discussed. Then, by

utilizing the presented observation strategy, the unknown input

reconstruction scheme as well as its stability analysis are

addressed.

A. Structure of the Proposed Multiple Sliding Mode Observer

In order to estimate the system states precisely with better

transient response, the estimated states are provided by com-

bining the observations obtained from multiple SMOs.

The proposed observer scheme is composed of N SMOs

with the following dynamics,

˙̂xi(α, t) = Ax̂i(α, t) +Bu(t) −Glỹi(α, t)
+Gnν( N∑

i=1

αix̂i(α, t), t),
ŷi(α, t) = Cx̂i(α, t),

(5)

where i = 1,2,⋯,N (N ≥ n+1), ỹi(α) = ŷi(α)−y , x̂i(α,0) =
x̂i(0), and

ν( N∑
i=1

αix̂i(α)) =
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
−ρ P2

N

∑
i=1

αiỹi(α)

∥P2

N

∑
i=1

αiỹi(α)∥

if
N∑
i=1

αiỹi(α) ≠ 0,
0 otherwise,
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with 0 ≤ αi ≤ 1, ∑N
i=1 αi = 1, and α = [α1 α2 ⋯ αN ]T .

To use the full information provided by the aforementioned

N observers and obtain promising estimation, the final state

estimation x̂o is considered as a convex combination of the

above estimations, i.e.,

x̂o(t) = N∑
i=1

αix̂i(α, t). (6)

In the sequel, the analysis is divided into two parts: the

algebraic part and the analytic part. In the former part, it is

guaranteed that there exist unknown fixed α∗i s such that by

choosing αi = α∗i s the perfect state estimation is obtained. The

latter part covers derivation of appropriate adaptive laws for

estimating these parameters. The following lemma is presented

to obtain the required condition for the existence of α∗i s.

Lemma 3: If the initial conditions of N (N ≥ n + 1) SMOs

with the structure of (5), x̂i(0)s, are chosen such that the

initial condition of the uncertain system (1), x(0), lies in their

convex hull K, then there exist some fixed α∗i s such that

x(t) = N∑
i=1

α∗i x̂i(α∗, t) (7)

where 0 ≤ α∗i ≤ 1, ∑N
i=1 α

∗
i = 1, and α∗ =[α∗1 α∗2 ⋯ α∗N ]T .

Proof. There exists a change of coordinates, using a non-

singular matrix J that transforms the triple (A,D,C) of

system (1) to new coordinates (A,D,C) such that [33]:

ẋI =A11xI +A12y +B1u
ẏ =A21xI +A22y +B2u +D2ξ

(8)

where xI ∈ R(n−p), y ∈ Rp, A = JAJ−1, B = JB, C = CJ−1,D = JD, and A11 is a stable matrix. On the other hand by

using (5), (6), and the fact that αis are constant, one can obtain

the dynamics of state estimation as

˙̂xo = Ax̂o +Bu −Glỹo +Gnν(x̂o),
ŷo = Cx̂o,

(9)

where ỹo = ŷo − y, x̂o(0) =∑N
i=1 αix̂i(0), and

ν(x̂o) = ⎧⎪⎪⎨⎪⎪⎩
−ρ P2ỹo

∥P2ỹo∥
if ỹo ≠ 0,

0 otherwise.

Similarly, the following dynamics can be obtained from (9)

using the aforementioned transition matrix J :

˙̂xI = A11x̂I +A12ŷ +B1u(t)− Gl1ỹo
˙̂y = A21x̂I +A22ŷ +B2u(t)− Gl2ỹo + Gn2ν (10)

where Gl = [GTl1 GTl2]T = JGl and Gn = [0 GTn2]T = JGn.

Let us select the design parameters as

Gl1 = A12, Gl2 = A22 −As
22, Gn2 = ∥D2∥Ip. (11)

where As
22 is a design Hurwitz matrix. Now, a Lyapunov

function candidate as V (x̃I , ỹo) = x̃T
I P1x̃I+ỹTo P2ỹo with x̃I =

x̂I −xI can be considered. In addition, two symmetric positive

definite design matrices are defined as Q1 ∈R(n−p)×(n−p) and

Q2 ∈Rp×p, and P1 and P2 are the symmetric positive definite

matrices that satisfy the following Lyapunov equations

P2As
22 + (As

22)TP2 = −Q2 (12)

P1A11 +AT
11
P1 = −(AT

21
P2Q

−1
2
P2A21 +Q1)

Then, following a procedure similar to what presented in [33],

it can be shown that V̇ < 0, and in turn, one can conclude that

V (t) < V (0) (13)

To show that there exist some α∗i s satisfying (7), one can

employ the transformation matrix J and rewrite the Lyapunov

function V as follows:

V = x̃T
o P x̃o,

P = JT [P1 0

0 P2

]J (14)

where x̃o = x̂o −x is the observation error. By considering the

equation of

λ(P )x̃T
o x̃o ≤ V ≤ λ(P )x̃T

o x̃o, (15)

where λ(P ) and λ(P ) respectively are the smallest and largest

eigenvalues of P , one can rewrite (13) as

∥x̃o(t)∥ ≤
¿ÁÁÀλ(P )

λ(P )∥x̃o(0)∥. (16)

It is obvious that if x̃o(0) = 0, the right-hand side of the

preceding inequality is zero, and consequently, x̃o(t) will

maintain zero for all t ≥ 0. Therefore, to conclude the proof,

it is sufficient to find the conditions under which x̃o(t = 0) is

zero. Towards this end, one can use Lemma 1 and conclude

that if the initial conditions of SMOs, i.e., x̂i(0)s, are chosen

such that x(0) is in the convex hull K of x̂i(0)s, then fixed

α∗i s exist such that

x(0) = N∑
i=1

α∗i x̂i(0)
Hence, one can compare the preceding equation with (6) and

see that the required condition for the perfect state estimation,

x̃o(t = 0) = 0, is satisfied. ◻
It is worth noting that for x(0) lies in the convex hull K of

x̂i(0)s, one should at least utilize N = n + 1 SMOs.

So far, it has been shown that there exist some α∗i s that

provide perfect state estimation. However, these parameters

are required to be estimated since they are unknown. Let us

define x̃i = x̂i − x, and use (7) and ∑N
i=1 α

∗
i = 1 to obtain∑N

i=1 α
∗
i x̃i(α∗, t) = 0. On the other hand, because α∗N = 1 −∑N−1

i=1 α∗i and x̃i(α∗) − x̃N (α∗) = x̂i(α∗) − x̂N(α∗), one can

get
N−1∑
i=1

α∗i (x̂i(α∗, t) − x̂N(α∗, t)) = −x̃N(α∗, t) (17)

Now, one can employ (5) to obtain

˙̂xi(α∗, t) − ˙̂xN(α∗, t) = (A −GlC)(x̂i(α∗, t) − x̂N(α∗, t))
(18)

It can be seen that x̂i(α∗, t) − x̂N (α∗, t) is obtained from a

linear system and in turn, only depends on x̂i(0) − x̂N (0);



4

therefore, if a matrix E is considered such that its ith column

is equal to x̂i(α∗, t) − x̂N (α∗, t), it is independent of α∗. As

a result, (17) is rewritten as follows

E(t)ᾱ∗ = −x̃N (ᾱ∗, t) (19)

where ᾱ∗ = [α∗1 α∗2 ⋯ α∗N−1]T . If x̃N (α∗) was known,

the previous equation could be utilized for estimating ᾱ∗;

however, it is unknown since x and x̂N(ᾱ∗) are not available.

Nonetheless, one can premultiply (19) by C and get

CE(t)ᾱ∗ = −ỹN(ᾱ∗, t) (20)

Since ŷN(ᾱ∗) is unknown in the the preceding equation,

the RLS algorithm cannot be employed for estimating ᾱ∗.

However, it is proposed to employ a modification of the RLS

algorithm as follows

˙̄̂α(t) = −R(t)E(t)TCT (CE(t) ˆ̄α(t) + ỹN( ˆ̄α(t), t)),
Ṙ(t) = −R(t)E(t)TCTCE(t)R(t), (21)

where ˆ̄α(0) = ˆ̄α0, R(0) = µI , ˆ̄α is an estimation of ᾱ∗,

ỹN( ˆ̄α) = ŷN( ˆ̄α) − y, I is the identity matrix, and µ is a

positive constant. Moreover, since E(t) is independent of ᾱ∗,

its ith column is considered as x̂i( ˆ̄α(t), t)−x̂N( ˆ̄α(t), t). Even

though ỹN( ˆ̄α) is employed instead of ỹN(ᾱ∗), it will be

shown later that the previous equation is able to provide an

estimation of ᾱ∗ suitable for estimating the state of the plant.

Now, the obtained ˆ̄α can be exploited in the following SMOs

for estimating the state variables

˙̂xi( ˆ̄α) = Ax̂i( ˆ̄α) +Bu −Glỹi( ˆ̄α) +Gnν(x̂o),
x̂o = N−1∑

i=1

α̂ix̂i( ˆ̄α) + (1 − N−1∑
i=1

α̂i)x̂N( ˆ̄α) (22)

where ỹi( ˆ̄α) = Cx̂i( ˆ̄α) − y and

ν(x̂o) =
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
−ρ P2

N

∑
i=1

α̂iỹi( ˆ̄α)

∥P2

N

∑
i=1

α̂iỹi( ˆ̄α)∥

if
N∑
i=1

α̂iỹi( ˆ̄α) ≠ 0,
0 otherwise,

Now, it is required to investigate the stability of the proposed

observation scheme, constructed from two interconnected sys-

tems (21) and (22), as well as the estimation error. In this

regard, the following theorem is presented.

Theorem 2: For system (1), consider the modified RLS

algorithm (21) and N SMOs (22). If a non-singular matrix

J that transforms (1) to (8) is considered, the design matrices

are chosen as

Gl = J−1 [ A12A22 −As
22

] ,Gn = ∥D2∥J−1 [ 0Ip] (23)

and P2 satisfies (12), then it can be guaranteed that the

observation error system is quadratically stable. Moreover, x̂is

are uniformly ultimately bounded, and ˆ̄α and R are bounded.

Proof. Throughout the proof, it is required to employ the

upper bounds of ∥E(t)∥ and ∥R(t)∥. In this regard, one can

employ the definition of E and (18) to obtain

Ė(t) = A0E(t) (24)

where A0 = A − GlC is a Hurwitz matrix. Therefore, we

have E(t) = eA0tE(0), and ∥E(t)∥ ≤ ∥eA0t∥∥E(0)∥. In order

to obtain an upper bound for ∥eA0t∥, a Lyapunov function

candidate L = Tr[eAT

0
tP0e

A0t] with P0A0 + AT
0 P0 = −I is

considered. Hence it can be obtained that L̇ = −Tr[eAT

0
teA0t].

On the other hand, we have

λ(P0)Tr[eAT

0
teA0t] ≤ L(t) ≤ λ(P0)Tr[eAT

0
teA0t] (25)

where λ(P0) and λ(P0) are the smallest and largest eigenval-

ues of P0, respectively. One can use the preceding equation

to get L̇ ≤ −(1/λ(P0))L. Now, it is valid to say

L(t) ≤ e− 1

λ(P0)
t
L(0)

Moreover, by using (25), one has

Tr[eAT

0
teA0t] ≤ nλ(P0)

λ(P0)e−
1

λ(P0)
t

In addition, the equation ∥eA0t∥2 ≤ Tr[eAT

0
teA0t] can be

employed for rewriting the preceding equation as follows

∥eA0t∥ ≤ ke−λt (26)

where k = √nλ(P0)/λ(P0) and λ = 1/(2λ(P0)). By using

the obtained upper bound of ∥eA0t∥, we get

∥E(t)∥ ≤ ke−λt∥E(0)∥ (27)

For R(t), the fact that it is a positive definite matrix can be

employed. On the other hand, from (21) it can be seen that

Ṙ(t) ≤ 0; therefore, by using R(0) = µI , we have 0 ≤ R(t) ≤
µI , i.e., R(t) is bounded. Now it can be said that

∥R(t)∥ ≤ µ (28)

For obtaining the preceding equation, ∥R(t)∥2 = λ(R(t))2
with the largest eigenvalue of R(t) as λ(R(t)) is employed,

which is valid since R(t) is a symmetric matrix.

Now, the obtained upper bounds can be used for proving

the stability of the observation error system. In this regard, the

state estimation (22) and the definition of E can be utilized

to obtain

x̃o = E ˆ̄α + x̃N ( ˆ̄α) (29)

where x̃o = x̂o − x and x̃N = x̂N − x. By using the previous

equation and (21), we have

˙̄̂α = −RETCTCx̃o (30)

Moreover, the observation error system of the N th observer

can be obtained using (1) and (22) as follows

˙̃xN( ˆ̄α) = A0x̃N ( ˆ̄α) +Gnν(x̂o) −Dξ(t, x, u) (31)

By taking the derivative of (29) and using (24), (30), and (31),

one can obtain the observation error system as follows

˙̃xo = A0x̃o +Gnν(x̂o) −Dξ(t, x, u) −ERETCTCx̃o (32)

To show that the error system (32) is stable, let us start with

the the following nominal error system

˙̃xo = A0x̃o +Gnν(x̂o) −Dξ(t, x, u)
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One can compare the preceding equation with the observation

error system for the SMO (3) and see that they are the same.

As a result, by choosing the design matrices as (23), the

error system is quadratically stable [33]. Hence, there exists

a Lyapunov function V (x̃o) for the nominal error systems

satisfying

c1∥x̃o∥2 ≤ V (x̃o) ≤ c2∥x̃o∥2
∂V

∂t
+ ∂V

∂x̃o

[A0x̃o +Gnν(x̂o) −Dξ(t, x, u)] ≤ −c3∥x̃o∥2
∥ ∂V
∂x̃o

∥ ≤ c4∥x̃o∥
(33)

for some positive constants c1, c2, c3, and c4 [34]. By

considering V (x̃o) as a Lyapunov function candidate for the

observation error (32), one can get

V̇ (x̃o) ≤ ∂V

∂t
+ ∂V

∂x̃o

[A0x̃o +Gnν(x̂o) −Dξ(t, x, u)]
− ∂V

∂x̃o

ERETCTCx̃o

Using (33) and performing some basic manipulations on the

preceding equation result in

V̇ (x̃o) ≤ −c3∥x̃o∥2 + c4∥E∥2∥R∥∥C∥2∥x̃o∥2
One can employ (27) and (28) to get

V̇ (x̃o) ≤ −c3∥x̃o∥2 + c5e−2λt∥x̃o∥2
where c5 = c4k2µ∥E(0)∥2∥C∥2. By considering (33), we have

V̇ (x̃o) ≤ (−c3
c2
+ c5

c1
e−2λt)V (x̃o)

Therefore, the following equation is satisfied

V (t) ≤ e− c3

c2
t
e

c5

2λc1
(1−e−2λt)

V (0)
Moreover, e

c5

2λc1
(1−e−2λt) ≤ e c5

2λc1 ; hence

V (t) ≤ k1e− c3

c2
t
V (0)

where k1 = e c5

2λc1 . Moreover, one can employ (33) and obtain

∥x̃o(t)∥ ≤ k2e− c3

2c2
t∥x̃o(0)∥ (34)

with k2 = √k1
c2
c1

. From the previous equation it can be

concluded that the observation error converges to zero expo-

nentially fast.

For proving the boundedness of ˆ̄α, the integral of (30) is

considered as follows

ˆ̄α(t) = ˆ̄α(0) − ∫ t

0

R(τ)E(τ)TCTCx̃o(τ)dτ
Now, one can use (27), (28), and (34) to get

∥ ˆ̄α(t)∥ ≤ ∥ ˆ̄α(0)∥ + µkk2∥E(0)∥∥C∥2∥x̃o(0)∥∫ t

0

e−λτe
−

c3

2c2
τ
dτ

By considering ∫ t

0
e−λτe

−
c3

2c2
τ
dτ ≤ 2c2/(2λc2 + c3), it can be

seen that ˆ̄α is bounded.

For x̂i( ˆ̄α)s, one can consider the estimation error of the ith

observer as x̃i = x̂i − x and a Lyapunov function candidate

Vi(x̃i( ˆ̄α)) = x̃i( ˆ̄α)TP0x̃i( ˆ̄α) with P0A0 + AT
0
P0 = −I .

Therefore, by using (1) and (22) we can get

V̇i(x̃i( ˆ̄α)) ≤ −∥x̃i( ˆ̄α)∥2 + 2∥x̃i( ˆ̄α)∥∥P0∥
× (∥Gn∥∥ν(x̂o)∥ + ∥D∥∥ξ∥)

On the other hand, we have ∥ν(x̂o)∥ ≤ ρ and ∥ξ∥ ≤ ρ. As a

result, V̇i(x̃i( ˆ̄α)) < 0 for ∥x̃i( ˆ̄α)∥ > 2ρ∥P0∥(∥Gn∥ + ∥D∥). In

other words, since x is bounded, x̂is are uniformly ultimately

bounded. ◻
The presented theorem states that the proposed observation

scheme is able to provide a state estimation that converges

to the state of the plant. In the next section, the performance

of this observation scheme is investigated to obtain conditions

that result in a better state estimation.

B. Performance Investigation

This section is aimed at analyzing the performance of the

proposed observer to see whether it is able to provide better

state estimations than a single sliding mode observer. In order

to investigate this improvement, the following lemma needs to

be considered.

Lemma 4: For system (1), if the pair (A,C) is observable,

then the system (A,D,C) has no invariant zero.

Proof. According to the Popov-Belevitch-Hautus rank test,

the following matrix has full column rank since (A,C) is

observable

P(s) = [sIn −A
C
]

Therefore, rank(P(s)) = n. On the other hand, by considering

the Rosenbrock matrix (4) and the fact that D has full rank,

one can conclude that rank(R(s)) = rank(P(s)) + q, which

means there is no s0 that makes R(s0) lose rank. ◻
It can be seen from Lemma 4 that if rank(CD) = q

and (A,C) is observable, the conditions of Theorem 1 are

satisfied, and in turn, the results of the previous sections are

still valid. As a result, in this section, it is assumed that the

pair (A,C) is observable. In addition, we assume that x(0)
is in the convex hull K of x̂i(0)s; hence (19) is satisfied, and

one can rewrite (29) as follows

x̃o = E ˜̄α + x̂N ( ˆ̄α) − x̂N(ᾱ∗) (35)

where ˜̄α = ˆ̄α − ᾱ∗. For analyzing the preceding equation, the

definition of ν and the fact that by choosing αi = α∗i s, the

equality x̂o(t) = x(t) is valid, can be considered to get

˙̂xN (ᾱ∗) = Ax̂N (ᾱ∗) +Bu −GleN(ᾱ∗)
Therefore, we have

d

dt
[x̂N ( ˆ̄α) − x̂N(ᾱ∗)] = A0[x̂N( ˆ̄α) − x̂N (ᾱ∗)] +Gnν(x̂o)

Since x̂N ( ˆ̄α(0),0) = x̂N (ᾱ∗,0), the following equation can

be obtained

x̂N ( ˆ̄α(t), t) − x̂N (ᾱ∗, t) = ∫ t

0

eA0(t−τ)Gnν(x̂o(τ))dτ
Now, by using (26) and ∥ν(x̂o)∥ ≤ ρ, one has

∥x̂N ( ˆ̄α(t), t) − x̂N(ᾱ∗, t)∥ ≤ 1

λ
kρ∥Gn∥(1 − e−λt) (36)



6

The preceding equation and (35) can be employed to get

∥x̃o(t)∥ ≤ ∥E(t) ˜̄α(t)∥ + 1

λ
kρ∥Gn∥(1 − e−λt) (37)

To proceed with the analysis, it is required to consider∥E(t) ˜̄α(t)∥. In this regard, (30) and (35) can be utilized to

get
˙̄̃α = −RETCTC(E ˜̄α + x̂N( ˆ̄α) − x̂N(ᾱ∗)) (38)

On the other hand, one can use (21) and dR−1

dt
= −R−1ṘR−1

to obtain the following equation

dR−1

dt
= ETCTCE (39)

Therefore, by employing (38) we have

d(R−1 ˜̄α)
dt

= −ETCTC(x̂N ( ˆ̄α) − x̂N(ᾱ∗))
One can take the integral of the previous equation and pre-

multiply it by R(t) to get

˜̄α = R(t)
µ
[ ˜̄α0−µ∫ t

0

E(τ)TCTC(x̂N ( ˆ̄α(τ), τ)−x̂N (ᾱ∗, τ))dτ]
(40)

where ˜̄α0 = ˆ̄α0 − ᾱ∗. It is worth noting that R(0) = µI is used

for obtaining the preceding equation.

In what follows, the goal is to obtain 1

µ
R(t) which exists

in (40). Towards this end, (39) is employed to show that

R(t)−1 − 1

µ
I = ∫ t

0

E(τ)TCTCE(τ)dτ
Using E(t) = eA0tE(0), we have

R(t)
µ
= [I + µE(0)T ∫ t

0

eA
T

0
τCTCeA0τdτE(0)]−1 (41)

Since it is assumed that (A,C) is observable, it can be easily

shown that the pair (A0,C) is also observable. As a result,

the observability Gramian

Wo(t) = ∫ t

0

eA
T

0
τCTCeA0τdτ (42)

is nonsingular for any t > 0. It follows that there exists a con-

stant b1 > 0 such that b1I ≤Wo(t). Hence Wo(t)−1 ≤ 1

b1
I; and

since Wo(t) =Wo(t)T , we have ∥Wo(t)−1∥2 = λ(Wo(t)−1)2
which follows that

∥Wo(t)−1∥ ≤ 1

b1
(43)

Now by substituting (42) into (41) and using the matrix

inversion lemma, one has

1

µ
R(t) = I − µE(0)T [Wo(t)−1 + µE(0)E(0)T ]−1E(0)

By using the fact that E(0) is n× (N − 1) and N − 1 ≥ n, we

can assume that E(0)E(0)T is invertible. Therefore, we have

1

µ
R(t) = I −E(0)T (E(0)E(0)T )−1Q0(t)E(0) (44)

where

Q0(t) = [I + 1

µ
Wo(t)−1(E(0)E(0)T )−1]−1 (45)

It is required to rewrite (45) into an infinite series. In this

regard, we will use Lemma 2. In order to employ the Lemma

2, (43) and ∥(E(0)E(0)T )−1∥ = b2 can be used to get

∥Wo(t)−1(E(0)E(0)T)−1∥ ≤ b2

b1

Thus by choosing µ > b2/b1, the condition of Lemma 2 is

satisfied and (45) can be considered as

Q0(t) = I + ∞∑
k=1

[− 1
µ
Wo(t)−1(E(0)E(0)T )−1]k

By considering (37) and (40), for obtaining ∥E(t) ˜̄α(t)∥, one

needs to substitute the preceding equation into (44) and use

E(t) = eA0tE(0) to get

1

µ
E(t)R(t) = −eA0t

∞∑
k=1

[− 1
µ
Wo(t)−1(E(0)E(0)T )−1]kE(0)

As a result, using (40) we have

E(t) ˜̄α(t) = Q1(t)E(0) ˜̄α0

−Q2(t)∫ t

0

eA
T

0
τCTC(x̂N ( ˆ̄α(τ), τ) − x̂N(ᾱ∗, τ))dτ

(46)

where

Q1(t) = −eA0t
∞∑
k=1

[− 1
µ
Wo(t)−1(E(0)E(0)T )−1]k

Q2(t) = eA0tWo(t)−1(I + ∞∑
k=1

[− 1
µ
(E(0)E(0)T )−1Wo(t)−1]k)

Using µ > b2/b1 and (26) follows that

∥Q1(t)∥ ≤ ke−λt ∞∑
k=1

[ 1
µ

b2

b1
]k = k b2

µb1 − b2 e
−λt

∥Q2(t)∥ ≤ ke−λt 1
b1
(1 + ∞∑

k=1

[ 1
µ

b2

b1
]k) = k µ

µb1 − b2 e
−λt

Utilizing the obtained upper bounds, (26), and (46) results

∥E(t) ˜̄α(t)∥ ≤ k b2

µb1 − b2 ∥E(0) ˜̄α0∥e−λt
+ k2 µ

µb1 − b2 ∥C∥2e−λt
×∫ t

0

e−λτ ∥(x̂N( ˆ̄α(τ), τ) − x̂N(ᾱ∗, τ))∥dτ
Now, (36) and (37) are employed to get

∥x̃o(t)∥ ≤ k b2

µb1 − b2 ∥E(0) ˜̄α0∥e−λt+
1

λ2

µ

µb1 − b2 k
3ρ∥C∥2∥Gn∥e−λt×

(1
2
− e−λt + 1

2
e−2λt) + 1

λ
kρ∥Gn∥(1 − e−λt)

Finally, since 1−e−λt ≤ 1 and e−λt(1/2−e−λt+e−2λt/2) ≤ 2/27,

we have

∥x̃o(t)∥ ≤ k b2

µb1 − b2 ∥E(0) ˜̄α0∥ + 2

27

1

λ2

µ

µb1 − b2 k
3ρ∥C∥2∥Gn∥

+ 1

λ
kρ∥Gn∥

(47)
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For performing the comparison, it is required to analyze the

observation error of conventional SMO using a similar method.

In this regard, let us to assume that ˙̄̂α(t) = 0. Hence we have
ˆ̄α(t) = ˆ̄α0, and one can use (22) and consider a state estimation

as follows

x̂s(t) = N−1∑
i=1

α̂i(0)x̂i( ˆ̄α0, t) + (1 − N−1∑
i=1

α̂i(0))x̂N( ˆ̄α0, t)
By using (22) it can be concluded that

˙̂xs = Ax̂s +Bu −Gleos +Gnν(x̂s)
where eos = Cx̂s − y. By comparing the preceding equation

with (3), it can be seen that if x̂s(0) = x̂(0), the obtained esti-

mation from conventional SMO is equal to x̂s(t). Therefore,

by using (35) and considering ˙̄̂α(t) = 0, one can get

x̃(t) = E(t) ˜̄α0 + x̂N( ˆ̄α0, t) − x̂N (ᾱ∗, t)
Similar to (37) it can be obtained

∥x̃(t)∥ ≤ ∥E(t) ˜̄α0∥ + 1

λ
kρ∥Gn∥(1 − e−λt)

Moreover, employing E(t) = eA0tE(0) and (26) results

∥x̃(t)∥ ≤ k∥E(0) ˜̄α0∥ + 1

λ
kρ∥Gn∥ (48)

Finally, it can be seen that the right hand side of (47) can

become arbitrary smaller than the upper bound of ∥x̃(t)∥ in

(48) if we choose µ and λ big enough. In other words, based on

the definition of λ, i.e., λ = 1/(2λ(P0)) where P0A0+AT
0 P0 =−I , one can conclude that choosing ∣Re(λi(A0))∣s and µ big

enough can result in a better estimation in comparison to

conventional sliding mode observers.

C. Fault Detection and Isolation

In this section, the fault of system (1) is approximated using

the proposed observer. In this regard, it is required to show

that a sliding motion takes place on the surface in the error

space S = {x̃o ∈ Rn ∶ Cx̃o = 0} (49)

Towards this end, the following lemma is presented.

Lemma 5: Let all conditions of Theorem 2 are satisfied.

Then, a sliding motion takes place on S (49) in finite time.

Proof. By using the transition matrix J , one can transform

the error system (32) to the following form

˙̃xI =A11x̃I − CT1 JERETJT Cỹo
˙̃yo =A21x̃I +As

22ỹo + ∥D2∥ν(x̂o)
−D2ξ − CTJERETJTCỹo

(50)

where C1 = [In−p 0]T and C = [0 Ip]T . Now, Vs(ỹo) =
ỹTo P2ỹo with P2 satisfying (12) is considered to get

V̇s = −ỹTo Q2ỹo − 2ỹTo P2CTJERETJTCỹo
+ 2ỹTo P2(A21x̃I + ∥D2∥ν(x̂o) −D2ξ)

One can use ∥C∥ = 1, (27), and (28) to obtain the following

equation

V̇s ≤ (−λ(Q2) + 2µk2∥P2∥∥J∥2∥E(0)∥2e−2λt)∥ỹo∥2
+ 2ỹTo P2(A21x̃I + ∥D2∥ν(x̂o) −D2ξ)

It can be seen that there exists T0 > 0 such that for t ≥ T0 we

have

−λ(Q2) + 2µk2∥P2∥∥J∥2∥E(0)∥2e−2λt ≤ 0
Hence, it is valid to say that

V̇s ≤ 2ỹTo P2(A21x̃I + ∥D2∥ν(x̂o) −D2ξ) ∀T0 ≤ t
From the definition of ν, it can be seen that ỹTo P2ν(x̂o) =−ρ∥P2ỹo∥. Moreover, from (2) and the definition of ρ, we

have ∥ξ∥ ≤ ρ − γ0. Therefore, it is obtained

V̇s ≤ 2∥P2ỹo∥(∥A21x̃I∥ − ∥D2∥γ0) ∀T0 ≤ t
It can be seen from the preceding equation that in the domain

Ω = {x̃I ∶ ∥A21x̃I∥ < ∥D2∥γ0 − δ} with positive scalar δ, the

following equation is valid

V̇s ≤ −2δ∥P2ỹo∥
From Theorem 2, we know that the observation error system

is quadratically stable; hence x̃I enters Ω in finite time. As

a result, there exists T0 ≤ T1 such that for all t ≥ T1 the

preceding equation is valid. In addition, since ∥P2ỹo∥2 =
(P 1/2

2
ỹo)TP2(P 1/2

2
ỹo), it can obtained

λ(P2)Vs ≤ ∥P2ỹo∥2

By employing the previous equation, one can get

V̇s ≤ −2δ√λ(P2)
√
Vs ∀T1 ≤ t

Solving the obtained inequality results
√
Vs(t) ≤√Vs(T1) − δ√λ(P2)(t − T1)

It can be easily seen that if Ts = T1 +√Vs(T1)/(δλ(P2)),
Vs(t) = 0 for all t ≥ Ts. In another word, sliding motion takes

place on S in finite time. ◻
The presented lemma can be employed for fault reconstruc-

tion of (1). Since sliding motion takes place after a finite time,

we have ỹo = 0 and ˙̃yo = 0, and equation (50) become

˙̃xI = A11x̃I (51)

0 = A21x̃I + ∥D2∥νeq(x̂o) −D2ξ (52)

where νeq is the equivalent signal. According to the equivalent

control method, the equivalent signal helps the sliding motion

to be maintained [35]. Moreover, since A11 is Hurwitz, it can

be seen from (51) that x̃I(t) → 0 as t → ∞. Consequently,

from (52) one can get

∥D2∥νeq(x̂o) → D2ξ

It is worth noting that rank(D2) = q [33]. Therefore, we can

reconstruct the fault as follows

ξ̂o = ∥D2∥D2(DT
2 D2)−1DT

2 νeq(x̂o) (53)

For obtaining the equivalent signal, the presented method in

[15] can be considered. In this regard, the discontinuous term

ν is replaced by its continuous approximation as follows

νδ(x̂o) = −ρ P2ỹo

∥P2ỹo∥ + δ (54)
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where δ is a positive constant that determines the accuracy of

approximation and needs to be chosen sufficiently small. Then,

the equivalent signal can be obtained to any desired accuracy

by using νeq = νδ .

It is worth noting that by considering (53), one can see

that the obtained fault reconstruction is based on the state

estimation. On the other hand, it was shown in the preceding

section that the proposed scheme is able to provide a more

preferable state estimation. Therefore, one can conclude that

it can also result in a better fault reconstruction in comparison

to conventional sliding mode observers.

IV. SIMULATION RESULTS

In this section, the effectiveness of the proposed fault de-

tection and reconstruction methodology is illustrated through

simulation. Towards this end, consider the Matsumoto-Chua-

Kobayashi (MCK) circuit, which is a chaotic system, as

follows [36]:

ẋ = Ax +Dξ

y = Cx
(55)

where

ξ(x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0.2 + 3(x1 − x3 + 1) x1 − x3 < −1
−0.2(x1 − x3) −1 ≤ x1 − x3 ≤ 1
−0.2 + 3(x1 − x3 − 1) 1 < x1 − x3

A =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 −1 0 0

1 0.7 0 0

0 0 0 −10
0 0 1.5 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,B = 0,D =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−1
0

10

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
C = [1 0 0 0

0 1 0 1
]

(56)

The system initial condition is considered as x(0) =
[−0.1 0 0.2 0]T .

In order to estimate the state variables and reconstruct the

fault rapidly, it is required to design the matrices Gl and Gn in

the proposed methodology. Towards this end, the eigenvalues

of A11 are selected as {−4,−6}, and the presented algorithm

in [33] is utilized to obtain the following transformation matrix

J =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

10 22.857 1 22.857

0 −63.265 0 −64.265
1 0 0 0

0 1 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Now, one can employ the aforementioned transition matrix

and transform (55) into the equivalent form (8). Consequently,

matrices (A,D,C) defined in (56) are transformed into new

coordinates (A,D,C) as follows

A =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

34.285 16 −320 234.571−96.398 −44.285 900.714 −642.653
0 −1 0 −64.265
1.5 0.7 −14 10.7

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

D =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

0

0−1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,C = [ 0 0 1 0

0 0 0 1
]

where A = JAJ−1,D = JD,C = CJ−1. Then by considering

As
22 = −10I2 and employing (10) and (11), one can get

Gl =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

−320 234.571

900.714 −642.653
10 −64.265−14 20.7

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,Gn =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0 0

1 0

0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Finally, the design matrices can be obtained using Gl = J−1Gl
and Gn = J−1Gn. Moreover, P2 = I2, ρ = 10, and δ = 0.01 are

employed to design νδ as (54).

As stated through the paper, the initial conditions x̂i(0)s
should be chosen such that x(0) lies in their convex hull K,

and for performance improvement, E(0)E(0)T needs to be

invertible. In this regard, five sliding mode observers (22) (N =
5) with the following initial conditions are considered

x̂1(0) = [+1 −1 +1 −1]T
x̂2(0) = [−1 +1 −1 +1]T
x̂3(0) = [+1 +1 +1 −1]T
x̂4(0) = [+1 −1 −1 +1]T
x̂5(0) = [+1 −1 +1 +1]T

Then, the initial conditions of the RLS algorithm (21) are

chosen as ˆ̄α0 = [0.2 0.2 0.2 0.2]T and R(0) = µI4 with

µ = 102.

In addition to the proposed scheme, one sliding mode

observer with the same design matrices, parameters, and

initial conditions, i.e., x̂(0) = ∑5

N=1 α̂i(0)x̂i(0) =
[0.6 −0.2 0.2 0.2]T , is utilized to obtain state estimation

and fault reconstruction. This assists us to demonstrate that

the proposed observation scheme results in more accurate

estimations in comparison to single sliding mode observers.

The obtained simulation results are presented in Fig. 1 and

Fig. 2. From these figures, it can be easily seen that the

consequence of employing the proposed observer is a state

estimation with more preferable transient response.

In order to demonstrate that choosing µ big enough results

in a superior performance, the simulation is also performed

for µ = 1010. Fig. 3 and Fig. 4 show the obtained state and

fault estimations for this value. The figures validate the theory

and show that choosing µ results in a better performance in

comparison to the conventional SMO.

V. CONCLUSIONS

In this research a novel fault reconstruction scheme was

presented using the concept of second level adaptation and

SMOs. In the proposed scheme, the information provided

by multiple SMOs with suitably chosen initial conditions

was employed to reconstruct the system states and the fault

(unknown input) rapidly. In this regard, it was shown that if the

initial condition of system lies inside the convex hull of SMOs

initial conditions, there exist some constant coefficients that

provide a perfect state estimation. An estimation of these co-

efficients was obtained using the RLS algorithm. Mathematical

analyses/justifications were provided to highlight performance

of the proposed observation strategy. The stability of the
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Fig. 1: State variables, x, and their estimations using the

proposed scheme, x̂o, and single sliding mode observer, x̂,

for µ = 102.
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Fig. 2: Fault signal, ξ, and its estimations using the proposed

scheme, ξ̂o, and single sliding mode observer, ξ̂, for µ = 102.

overall system as well as the structure of the fault recon-

struction scheme were fully addressed. Since the proposed

approach employs the collective information obtained from

multiple SMOs, it results in estimations with more preferable

transient response in comparison to conventional SMO-based

fault detection strategies.
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